ワイヤレス情報伝送の物理限界

~電波伝搬視点からのディジタル伝送特性解析 [II]~

唐沢好男

筆者は、移動伝搬に関する知識のほぼ全部を搾り出して、コロナ社の「改訂 ディジタル移動通信の電波伝搬基礎」[1]にまとめている。その本の最終項は 「10.8.2 情報伝送の物理限界」である。

この項では、ドップラー変動の標準偏差:ドップラースプレッド(σ_v ;本では 記号 σ_f を使用)と遅延広がりの標準偏差:遅延スプレッド(σ_t)の積: $\sigma_v\sigma_\tau$ (ス プレッドファクタと呼ばれる)が情報伝送の物理限界に立ちはだかる究極の伝 搬の壁であることを示唆したところで終えている。

その後、この問題について考察を深め、新たな知見を得ることができた。本レポートは、これをまとめている。

目次

1. はじめに	2
2. 二重選択性フェージング環境の統計的性質	2
3. 通信路容量	5
3.1 定義	
3. 2 情報理論的アプローチ(既存手法)	
3.3 統計的アプローチ(提案手法)	
4.通信路容量で見る情報伝送の物理限界	12
4.1 帯域幅制限領域と電力制限領域	
4.2 最適設計からのズレの影響	
5. BER のフロア値とスプレッドファクタ	16

(1)

1. はじめに

通信路が定常状態にあるときの雑音下での情報伝送の物理限界は、シャノンの通信路容量の式によって 定められている。しかし、これには電波伝搬の要因が含まれていない。すなわち、究極の情報伝送は、統計 多重効果によって、十分に長い時間(その極限は無限の時間)を使っての符号化や信号処理ができるとい う前提条件に立っている。これに対して、電波伝搬はその前提を妨げる働きをするため、シャノンの通路 容量式とは別の視点での情報伝送の物理限界がある。どんなに SN 比がよくても、通信方式を工夫してもシ ャノンの通信路容量式を達成できない電波伝搬環境がある。

取り上げる伝搬環境は、ドップラーの広がりと遅延の広がりが共に存在するマルチパス環境、すなわち、 時間領域と周波数領域に選択性を有する二重選択性フェージング環境である。この環境での情報伝送にお いて、良好な伝送を維持する条件として、筆者は、ドップラースプレッドのと遅延スプレッドのの積に着目 し、のvor<<1 を議論した[1],[2]。こののvorは、フェージング環境の伝搬特性:インパルス応答とドップラー 変動の同時測定条件を議論している古典的な論文[9],[10]で取り扱われているスプレッドファクタ(*)と、 概念を共有している。本稿でものvorをスプレッドファクタと呼び、これに支配されるディジタル伝送特性 に着目する。【*: この論文での定義は、ドップラー広がりの最大幅と遅延広がりの最大幅の積、詳しくは 2節で】

本稿では、まず、二重選択性フェージングの環境表現をおさらいし(§2)、この伝搬パラメータを組み 入れて拡張した通信路容量式の導出を行う(§3.3)。そして、この結果から見えてくる電波伝搬(スプレ ッドファクタ: σ、σ、)と伝送特性の関係を示す(§4)。通信路容量解析に関する本稿で展開する手法は、 統計的手法に基づく直観的な方法である。この種の解析では、文献[11]~[13]、及び、そこに引用されて いる多数の論文にあるように、情報理論が扱う相互情報量をベースとした緻密な方法が正攻法であろう(§ 3.2)。しかし、そのような手法によっても見通し良い式の導出には至っていないため、本稿は、それを搦 め手から攻めるイメージである。

最後の章(\S 5)では、二重選択性フェージング環境でのビット誤り率(BER)のフロア値の議論を行う。 BER のフロア値が最小になるような信号設計を行った限界値においては、ここでも、スプレッドファクタ $\sigma_v\sigma_r$ が壁となって現れる様を示す。

2. 二重選択性フェージング環境の統計的性質

送受信アンテナ間で見通し確保が困難な移動通信では、送信アンテナからの電波は周囲の地物や建物な どで反射や回折を受け、さまざまな経路を通って受信点に到達する。移動通信に見られるマルチパス伝搬 では、到来角度・ドップラー周波数・遅延時間に値の広がり(=ばらつき、スプレッド)があることであ る。これにより、場所・時間・周波数の領域で強弱の変化が現れる選択性をもたらすことになる。本稿で は、このうちの二つ:遅延広がりによる周波数領域での選択性と、ドップラー広がりによる時間領域での 選択性が同時に現れる二重選択性フェージング環境を対象とする。

遅延の広がりを伴うマルチパス環境は時変インパルス応答 h(t,t) (t経過時間、t遅延時間)で表され、素 j i o複素振幅 a_i 、遅延時間 t_i により、

$$h(t,\tau) = \sum_{i} a_{i}(t)\delta(\tau - \tau_{i}(t))$$

で表される。ここで、 δ は Dirac デルタ関数である。

本稿では遅延とドップラー周波数領域での表現を扱うので、時間変化(*b*をフーリエ変換して周波数領域 (*v*)に置き換えた遅延・ドップラースプレッディング関数 *g*(*v*,*b*で表す[14]。(文献[1]等において、ドップラ 一周波数の変数に *f*を用いてきたが、キャリア周波数と区別するために、本項では*v*(ニュー)を用いる)。

$$g(\nu,\tau) = \int_{-\infty}^{\infty} h(t,\tau) e^{-j2\pi\nu t} dt$$
⁽²⁾

図1 マルチパス環境の特徴と二重選択性フェージングのキーパラメータ"スプレッドファクタ"

統計的な環境表現とするために、スプレッド関数の電力次元の期待値をとると、

$$G(\nu,\tau) \equiv \left\langle \left| g(\nu,\tau) \right|^2 \right\rangle \approx S(\nu) p(\tau) \tag{3}$$

となる。遅延とドップラーの発生メカニズムは独立と考えられるので、(3)式の右辺のように、ドップラースペクトル S(v)と遅延プロファイル p(t)に変数分離した積で近似する。

遅延時間の最小値と最大値を τ_{min} , τ_{max} 、ドップラー周波数の最小値と最大値を v_{min} , v_{max} とするとき、 ($v_{max} \cdot v_{min}$)($\tau_{max} \cdot \tau_{min}$)は、スプレッドファクターと呼ばれる[10], [12], [15]。ここではこれを Δ_H で表す。 この値が1以上の状態(Δ_H >1)のときオーバースプレッド(overspread)、1以下の状態(Δ_H <1)のとき アンダースプレッド(underspread)と呼ばれる[10]。通信が成立するためにはアンダースプレッドが必須 条件であり、通常生起する伝搬・通信環境は、これより何桁も小さい値になる。このような状態は、強いア ンダースプレッド(highly underspread)と呼ばれる。到来角度に広がりがある環境で移動受信を行うと 受信信号はドップラー広がりによって、周波数± f_D (f_D :最大ドップラー周波数:これのみvでなく慣例の f を用いる)の範囲でスペクトル広がりを持つ。ゆえに、上述の $v_{max} \cdot v_{min}$ は $2f_D$ に置き換えられる。

電波伝搬現象は確率過程に従うため、上述の最大値(特に、遅延広がりでの)は、観測時間に依存してし まい、統計モデルとして扱いにくい量である。そのため、環境を表すパラメータには、統計値での指標が 望ましい。このため、次式で定義される指標:**遅延スプレッド**σ_rとドップラースプレッドσ_vを用いる。

$$\sigma_{\tau} = \sqrt{\frac{1}{P_R}} \int_{\tau_{\min}}^{\tau_{\max}} (\tau - \tau_m)^2 p(\tau) d\tau$$

$$\tau_m = \frac{1}{P_R} \int_{\tau_{\min}}^{\tau_{\max}} \tau p(\tau) d\tau$$

$$\sigma_{\nu} = \sqrt{\frac{1}{P_R}} \int_{-f_D}^{f_D} (\nu - \nu_m)^2 S(\nu) d\nu$$

$$v_m = \frac{1}{P_R} \int_{-f_D}^{f_D} f S(\nu) d\nu$$

$$P_R = \int_{\tau_{\min}}^{\tau_{\max}} p(\tau) d\tau = \int_{-f_D}^{f_D} S(\nu) d\nu$$
(6)

本稿では、ドップラースプレッドと遅延スプレッドの積: $\sigma_v \sigma_r \delta z Z$ レッドファクタと呼び、強いアン ダースプレッド環境(この場合は、 $\sigma_v \sigma_r \langle \langle 1 \rangle$)を対象とする。具体的には、およそ全ての現実的な通信環境 に含まれる $\sigma_v \sigma_r \langle 0.001$ が目安である。なお、統計値でのスプレッドファクタ定義は、Kennedyが文献[16]に おいて、 $\sigma_v^2 \sigma_r^2 \delta$ total spreadと呼んで用いており、本稿はこの思想に組みしている。

遅延時間領域の表現:遅延プロファイルは、マルチパス環境のWSSUS仮定により、周波数相関特性 $\rho_a^{(delay)}(\Delta f)$ がフーリエ変換により、また、ドップラーの周波数領域表現:ドップラーパワースペクトルは、 ウィーナ・ヒンチンの関係式より、自己相関特性 $\rho_a^{(Doppler)}(\Delta t)$ が逆フーリエ変換により求まり、それぞれ、 以下の形で表される。

$$\rho_a^{(\text{delay})}(\Delta f) = \frac{1}{P_R} \int_{\tau_{\text{min}}}^{\tau_{\text{max}}} p(\tau) \exp\left(-j2\pi\Delta f\tau\right) d\tau$$
(7)

$$\rho_a^{\text{(Doppler)}}(\Delta t) = \frac{1}{P_R} \int_{-f_D}^{f_D} S(\nu) \exp(j2\pi \nu \Delta t) d\nu$$
(8)

レイリーフェージング環境では、複素振幅変動の相関係数 ρ_a は、電力変動の相関係数 ρ_r とは、次式で結ばれる[1], [17]。

$$\rho_P = \left| \rho_a \right|^2 \tag{9}$$

図2は、2つの伝搬要因(遅延とドップラー)の時間領域と周波数領域の統計的関係をまとめている。 広帯域情報伝送を想定し、電波伝搬環境が通信帯域内で周波数選択性になっている状態でのディジタル 伝送を考える。帯域幅を*W_s、シンボル*時間長を*T_s*とすると、両者は*W_s<u>~</u>1/<i>T_s*の関係で結ばれる。

図2(a)の遅延プロファイル上に、 T_s の位置を定めると図の実線のようであったとする。この場合は、遅 延波がシンボル長を超えて存在するので、およそ通信ができない状況と言える。同じことは同図(b)でも帯 域 W_s では、帯域内で相関が劣化している。良好な通信を得るためには $\sigma_t << T_s$ でなければいけないが、それを 満たしていないということである。では、全く通信ができないかというとそうではない。何らかの方法に よって実効的にシンボル時間を長くすることができれば、これを克服することができる。図の例で言えば T_s を点線で示す実効シンボル長 T_s に替えることができればである。実際にOFDMでは、マルチキャリア化によ ってそれが行われており、 $\sigma_t << T_s$ を満たす T_s (OFDMでは T_{OFDM}) に変えることは可能である(等化器でも、メ モリー機能を使って実効的に時間を引き延ばしているので同じ働きになる)。このように、信号帯域幅 W_s に 対応するシンボル長 T_s を実効的なシンボル時間 T_c に引き伸ばす信号変換をしても、マルチキャリア化等によ り、信号全体の帯域幅 W_s を変えないようにする。

ところが、ドップラー変動が激しい環境では、この操作が、伝送特性を劣化させる働きになる。図2(c) で、この領域で見ると、 $\sigma_v < W_s$ が満たされていた状態(すなわち $\sigma_v T_s <<1$ の状態)が W_e への変換によって、そ れが満たされなくなることになる。これは、同図(d)からわかるように、自己相関特性の劣化、すなわちフ ァーストフェージング(=シンボル時間内での大きな位相変化)状態になって、伝送特性の劣化になるの である。

このよう見ると、周波数・時間の両領域で選択性がある場合には、理想的な*L*を定めることができなくなり、どこかの伝送特性の最良点(=限界点)で妥協すると言うことになる。文献[1],[2]では、良好な伝送のための条件は、 $\sigma_r < T_e < 1/\sigma_v$ 、良好な伝送を実現できる環境は、通信方式によらず $\sigma_v \sigma_r < < 1$ であることを議論している。次章では、二重選択性フェージング環境の通信路容量を議論するが、そこに、情報伝送の物理限界として、スプレッドファクタ($\sigma_v \sigma_r$)が現れてくることを示す。

図2 二つの伝搬要因(遅延とドップラー)の時間領域と周波数領域の統計的関係(図中のカーブはイメージ)

3. 通信路容量

3.1 定義

シャノンはその原著論文[18]の中で、誤りなく情報伝送ができる上限の伝送レートを通信路容量 *C* と定め、以下の式を与えている。

$$C = \lim_{T \to \infty} \max_{q(x)} \frac{1}{T} \iint q(x, y) \log_2 \frac{q(x, y)}{q(x)q(y)} dx dy$$
(10a)

$$=W_s \log_2(1+\gamma) \text{ (bps)} \qquad (\gamma \equiv P_s / P_N) \qquad (10b)$$

ここで、x, yは送受信信号、q(x), q(y)はxおよびyの確率密度関数, q(x,y)は結合確率密度関数である。また、 P_s は信号成分の、 P_N は雑音成分の平均電力、 γ はSN比である。(10b)式は、雑音が加法性白色ガウス維音(AWGN)である時に成立する式である。式(10a)からも明らかなように、伝搬環境が定常状態において、十分な時間をかけて送信信号の符号化を工夫すれば、式(10b)の伝送レートが誤りなく達成されることになる。熱雑音下の定常状態において、情報伝送の物理限界はこのシャノンの通信路容量にあると言える。

SN 比: pがその平均値を Γ_0 として、時間的に十分に緩やかに変化する場合には、すなわち、十分な時間をかけての符号化が可能であるという前提が維持されるならば、平均通信路容量 C_e は次式のように表される。

•~~

$$C_e(W_s, \Gamma_0) = W_s \int_0^\infty p_{SNR}(\gamma; \Gamma_0) \log_2(1+\gamma) d\gamma$$
(11a)

$$\leq W_s \log_2(1+\Gamma_0) \tag{11b}$$

ここで、*p*_{SNR}は、SN 比: γの確率密度関数である。(11b)式は Jensen の不等式によるが、ほぼ等号と考え て良い。以下では、この *C*_eを改めて *C* と置き、これを通信路容量と呼ぶ。

移動通信におけるマルチパス伝搬環境は、時間的にも、周波数的にもひずみが生じるため、十分な時間 をかけて符号化するという通信路容量実現に課せられる前提条件が崩れてしまうため、情報伝送の限界は、 電波伝搬条件によってさらに狭められることになる。このため、電波伝搬的な視点からの物理限界の議論 が必要になる。

なお、通信路容量には通信路情報(CSI)の扱いによって、coherent capacity と noncoherent capacity の区別がされている。送信側が CSI 情報に基づいて最適伝送を行う場合に得られる通信路容量が coherent capacity、通信路の特徴パラメータ(τ_{max} , σ_v , σ_r など)を利用する伝送によって得られる通信路容量 が noncoherent capacity である。従来の情報理論的アプローチにおいては、noncoherent capacity を対象としており、ここで提案する統計的アプローチにおいても、noncoherent capacity を対象にしている。

3.2 情報理論的アプローチ(既存手法)

通信路容量解析に関する本稿で展開する手法は、統計的手法に基づく直観的な方法(=比較的大胆な方法)である。この手法については、次節で述べるが、その背景となる情報理論的アプローチによる通信路容量解析の概要をここにまとめる。情報理論ベースの通信路容量解析については、IEEE Trans. Information Theoryの論文誌上におびただしい数の論文が発表されている。1997年時点までの研究の成果は、Biglieriのレビュー論文([11],引用文件数594,74ページにわたる超大作)にまとめられている。その後10年程度も、高度な数学をベースとした研究が継続されるが[19]-[21]、二重選択性フェージング環境での通信路容量解析と言う意味では、明確なモデル構築には至っていなかった。そのような中で、2010年、 Durisi等は、時間と周波数領域をWeyl-Heisenberg setでの分割を行うことによる符号設計法に基づく新たな展開を試み、通信路容量研究に、一つの有望な道筋を示した[12],[22]。この手法は、情報理論的アプローチとして、その完成に向け、現在も研究が進んでいる[13],[23]。しかしながら、このような高度な数学的手法をもってさえ、電波伝搬と通信システムの関わりを明確にしたモデル(通信システム設計に役立つ実用的なモデル)は、まだ確立されていない(と筆者は理解している)。

この節では、Durisiらによって打ち立てられた情報理論的アプローチによる通信路容量解析の方法の入 口部分を簡単にまとめる。(非常に高度な数学理論で組み立てられており、筆者の力では理解しきれていな いというのが正直なところ)。

電波伝搬環境として、遅延広がりとドップラー広がりを共に有する二重選択性フェージング環境を対象 とする。マルチパスの発生が広義定常・独立散乱(WSSUS)の確率過程に従うレイリーフェージング環境で ある。

Durisi等の情報理論的アプローチでは、伝搬パラメータとして、遅延の範囲を± α 、ドップラー周波数シフトの範囲を± μ とし、パラメータ値の2次元エリアを4 $\mu\alpha$ で定める。スプレッドファクタ Δ_{H} である。

マルチパス環境下での送受信信号は時変インパルス応答h(t,t)を介して、次式で表される。

$$r(t) = \int_{-\infty}^{\infty} h(t,\tau) s(t-\tau) d\tau + n(t)$$
(12)

ここで、s(t), r(t)は送信および受信信号、n(t)は受信機で発生する熱雑音(AWGN)、tは経過時間、dは遅 延時間である。

インパルス応答の時間変化の部分をドップラー周波数に変換して表したものが、遅延・ドップラースプ レッディング関数であり、この関数g(v,t)は、(2)式で示したように、h(t,t)のt→vのフーリエ変換で与え られる[12]。情報理論的アプローチにおいても、筆者らの統計的アプローチにおいても、このドップラー 周波数・遅延時間領域での信号表現が鍵になる。

Durisi等らは、式(12)で与えられる連続信号を時間領域と周波数領域おいて、Weyl-Heisenberg (WH)系で離散化し、送信信号s(t)をK×Lのブロックに分けた信号の和として、次式で表している。

$$s(t) = \sum_{k=0}^{K-1} \sum_{l=0}^{L-1} s[k,l] u_{k,l}(t)$$
(13)

(16b)

図3はWH直交系による離散化のイメージを示している。*TとF*は時間及び周波数領域のグリッドパラメー タで、それぞれの楕円エリア内の特性が、準定常状態となるよう*T*<u>〈</u>1/(2_k),*F*<u>〈</u>1/(2_k)で設定される。信 号の帯域幅*M*は*FLF*、時間ブロック長*D*は*D=KT*である。サブキャリア間隔*F*(サブキャリア数*L*)、シンボル 時間長*T*の0FDMをイメージするとよいであろう。式中の $u_{k,l}(t)$ は、送信信号の(k,l)成分s[k,l]を送り出す時間波 形で、パルス波形u(t)に対して、 $u_{k,l}(t)=u(t-kT)e^{i2\pi lFt}$ と変換される。

このとき、時間・周波数空間上で離散化された受信信号r[k,1]は次式で表される。

$$r[k,l] = h[k,l]s[k,l] + \sum_{\substack{k'=0\\(k',l')\neq(k,l)}}^{K-1} \sum_{\substack{l'=0\\(k',l')\neq(k,l)}}^{L-1} z[k',l',k,l]s[k',l'] + n[k,l]$$
(14)

ここで、h[k,l]は、(k,l)セグメントでのチャネル特性、<math>z[k',l',k,l]は(k',l')セグメントから(k,l)への干渉を与える チャネル特性である。(14)式右辺の第1項は信号成分、第2項は自己干渉成分(ISI+ICI)、第3項は熱雑音 (AWGN)である。文献[12]では、現実的な解を得るために、第2項もガウス雑音換算として扱っている。

通信路容量は、伝送ビット数の上限を与える指標であるので、*u(t)*,*T*,*F*の最適化問題になる。式(14)のように離散化された信号に対する通信路容量は

$$C \equiv \lim_{K \to \infty} \frac{1}{KT} \sup_{f(s)} I(\mathbf{r}, \mathbf{s})$$
⁽¹⁵⁾

で表現される。**r**, **s**は離散化された送受信信号のベクトル列、*I*は相互情報量、*f*(**s**)は送信信号の確率分布、supは上限値である。

Durisi等の情報理論的アプローチでは、(14)式を(15)式に組み入れ、信号電力の上限を設定した上で、*C*を最大にする*u*(*t*), *T*, *F*の最適化問題を解くことになる。グリッドパラメータ*T*と*F*の関係については、以下の条件を課している。

$$TF \ge 1$$
 (16a)

$$T/F = \tau_0/\nu_0$$

式(16b)はグリッドマッチング則 (grid matching rule) と言われ、理論的裏付けがある[12]。

式(15)の noncoherent capacity について、数学的手段を駆使しての概念式は得られているが、実用的に 役立つ閉形式の表現式には至っていない。そのため、種々の仮定を加えて上限や下限を与える式が得られ ているが(式表現は割愛)、それでもなお、伝搬パラメータの影響が陽に見え、かつ、簡易に計算できる式 ではない[12], [13], [22], [23]。

図3 信号のWery-Heisenberg (WH)系 離散化表現 (Durisi et al. [22]のFig. 2.1より)

3.3 統計的アプローチ(提案手法)

式(7)、(8)で表される周波数領域及び時間領域の相関特性の劣化は、所望波に対する干渉波成分として 現れる。遅延の広がりによって劣化した信号の信号対干渉波電力比を SIR_{delay} ($\equiv \langle P_S/P_{L_delay} \rangle$)、ドップラーの 広がりによって劣化した信号の電力比を $SIR_{loopler}$ ($\equiv \langle P_S/P_{L_Doppler} \rangle$)とする。ここで P_S は、全信号成分電力 P_d の うちの干渉波成分($P_{I, delay} + P_{I, Doppler}$)を除いた所望波成分電力である。この干渉波成分も雑音と同じように ランダムに振る舞うと仮定して雑音に組み入れると、通信路容量は(11b)式を拡張して、以下の形で近似で きる[23]。(なお、ここでは、所望波と干渉波の高周波成分電力比を扱っているのでCIR (carrier-tointerference power ratio)に相当する量になるが、広義な意味でSN比(*SIR*)と呼ぶ。

$$C \approx W_s \log_2(1 + SNR_e)$$

$$SNR_e = \left\langle \frac{P_s}{P_N + P_{I_delay} + P_{I_Doppler}} \right\rangle$$

$$\approx \left(\Gamma_0^{-1} + SIR_{delay}^{-1} + SIR_{Doppler}^{-1} \right)^{-1}$$
(18)

(18)式は、アンダースプレッドの性質が比較的強い環境、すなわち、 P_{s} >> $P_{L_{delay}}$, $P_{L_{Doppler}}$ で成立する。 SIRは、相関係数 ρ_{a} 、 ρ_{P} を用いて次式で求められる。

$$SIR = \frac{|\rho_a|^2}{1 - |\rho_a|^2} = \frac{\rho_P}{1 - \rho_P}$$
(19)

【式(19)の根拠:相関係数とSIRの関係】

独立に複素ガウス分布(i.i.d.)する二つの確率変数をu, vする。また、ある変数xでの複素振幅をa(x)、 $x+\Delta x$ での値を $a(x+\Delta x)$ とし、その相関係数を $\rho_a(\Delta x)$ とする。このとき、二つの値は、次式で生成される。

$$a(x) = u, \quad a(x + \Delta x) = \rho_a u + \sqrt{1 - |\rho_a|^2} v$$
 (20a,b)

式(20b)の右辺の第1項は *a*(*x*)に対するコヒーレント成分、第2項はインコヒーレント成分であり、この インコヒーレント成分が実効的に雑音として働くため、SIR は次式で与えられる。

$$SIR(\Delta x) = |\rho_a|^2 / (1 - |\rho_a|^2) = \rho_P / (1 - \rho_P)$$

$$[:=:trop]$$

$$(21)$$

図2(b),(d)に示す周波数領域および時間領域の相関係数の双方において、少なくとも通信が成立する範囲では、*Af*, *At*が0付近、すなわち相関係数が1に近い部分に着目すればよい。相関係数*p*_Pを*x*=0の付近でテイラー展開すると次式の形になる。

$$\rho_{p}(x) = \rho_{p}(0) + \rho_{p}'(0)x + \frac{1}{2}\rho_{p}''(0)x^{2} + \cdots$$
(22)

(7) 式及び(9) 式で定まる $\rho_{P}^{(delay)}$ に関し、

$$\frac{\partial \rho_{p}^{(\text{delay})}}{\partial \Delta f}\Big|_{\Delta f=0} = \frac{1}{P_{R}} \frac{\partial \left| \int_{\tau_{\min}}^{\tau_{\max}} p(\tau) \exp\left(-j2\pi\Delta f\tau\right) d\tau \right|^{2}}{\partial \Delta f}\Big|_{\Delta f=0} = 0$$
(23)

. .

$$\frac{\partial^{2} \rho_{p}^{(\text{delay})}}{\partial \Delta f^{2}} \bigg|_{\Delta f=0} = \frac{1}{P_{R}^{2}} \frac{\partial^{2} \bigg| \int_{r_{\min}}^{r_{\max}} p(\tau) \exp\left(-j2\pi\Delta f\tau\right) d\tau \bigg|^{2}}{\partial \Delta f^{2}} \bigg|_{\Delta f=0}$$
$$= -8\pi^{2} \sigma_{\tau}^{2} \tag{24}$$

であるので、 $\rho_{P}^{(delay)}$ は、(22)式の $\Delta x \epsilon \Delta f$ として

$$\rho_P^{\text{(delay)}}(\Delta f) \approx 1 - 4\pi^2 \sigma_\tau^2 \Delta f^2 \tag{25}$$

と近似できる。

【(23), (24)式の導出】

遅延広がりに起因する周波数相関 $\rho_p^{(delay)}$ の微分を求めるが、式表現を簡単にするため、 $\rho_a^{(delay)}$ 、 $\rho_p^{(delay)}$ を ρ_a 、 ρ_p と表記する。式(7), (9)より、

$$\rho_a(\Delta f) = \frac{1}{P_R} \int_{\tau_{\min}}^{\tau_{\max}} p(\tau) \exp(-j2\pi\Delta f\tau) d\tau$$

$$\rho_P(\Delta f) = \left|\rho_a(\Delta f)\right|^2$$
(26)

$$= \frac{1}{P_R^2} \int_{\tau_{mn}}^{\tau_{max}} p(\tau) \exp\left(-j2\pi\Delta f\tau\right) d\tau \int_{\tau_{mn}}^{\tau_{max}} p(\tau) \exp\left(j2\pi\Delta f\tau\right) d\tau$$
(27)

これより、

$$\frac{\partial \rho_{P}}{\partial \Delta f} = \frac{-j2\pi}{P_{R}^{2}} \left\{ \int_{\tau_{mn}}^{\tau_{max}} \tau p(\tau) \exp\left(-j2\pi\Delta f\tau\right) d\tau \int_{\tau_{mn}}^{\tau_{max}} p(\tau) \exp\left(j2\pi\Delta f\tau\right) d\tau - \int_{\tau_{mn}}^{\tau_{max}} p(\tau) \exp\left(-j2\pi\Delta f\tau\right) d\tau \int_{\tau_{mn}}^{\tau_{max}} \tau p(\tau) \exp\left(j2\pi\Delta f\tau\right) d\tau \right\}$$
(28)

$$\frac{\partial \rho_P}{\partial \Delta f}\Big|_{\Delta f=0} = \frac{-j2\pi}{P_R^2} \left\{ \int_{r_{\min}}^{r_{\max}} \tau p(\tau) d\tau \int_{r_{\min}}^{r_{\max}} p(\tau) d\tau - \int_{r_{\min}}^{r_{\max}} p(\tau) d\tau \int_{r_{\min}}^{r_{\max}} \tau p(\tau) d\tau \right\} = 0$$
(29)

となり、式(23)が得られる。

同様に、2階微分は

$$\frac{\partial^2 \rho_P}{\partial df^2} = \frac{-4\pi^2}{P_R^2} \left\{ \int_{\tau_{mn}}^{\tau_{max}} \tau^2 p(\tau) \exp\left(-j2\pi \Delta f\tau\right) d\tau \int_{\tau_{mn}}^{\tau_{max}} p(\tau) \exp\left(j2\pi \Delta f\tau\right) d\tau - 2\int_{\tau_{mn}}^{\tau_{max}} \tau p(\tau) \exp\left(-j2\pi \Delta f\tau\right) d\tau \int_{\tau_{mn}}^{\tau_{max}} \tau p(\tau) \exp\left(-j2\pi \Delta f\tau\right) d\tau \int_{\tau_{mn}}^{\tau_{max}} \tau p(\tau) \exp\left(j2\pi \Delta f\tau\right) d\tau + \int_{\tau_{mn}}^{\tau_{max}} p(\tau) \exp\left(-j2\pi \Delta f\tau\right) d\tau \int_{\tau_{mn}}^{\tau_{max}} \tau^2 p(\tau) \exp\left(j2\pi \Delta f\tau\right) d\tau \right\}$$
(30)

であるので、以下により、(24)式が得られる。

$$\frac{\partial^{2} \rho_{P}}{\partial \Delta f^{2}}\Big|_{\Delta f=0} = \frac{-8\pi^{2}}{P_{R}^{2}} \left\{ \int_{\tau_{mn}}^{\tau_{max}} \tau^{2} p(\tau) d\tau \int_{\tau_{mn}}^{\tau_{max}} p(\tau) d\tau + \left(\int_{\tau_{min}}^{\tau_{max}} \tau p(\tau) d\tau \right)^{2} \right\}$$

$$= -8\pi^{2} \left(\left\langle \tau^{2} \right\rangle - \tau_{m}^{2} \right)$$

$$= -8\pi^{2} \sigma_{\tau}^{2}$$
(31)
$$\left\{ \& \Rightarrow \psi \right\}$$

一方、(8)式で定まる $\rho_P^{(Doppler)}$ についても、上記と同様の手順により、

$$\frac{\partial \rho_{P}^{(\text{Doppler})}}{\partial \Delta t}\Big|_{\Delta t=0} = \frac{1}{P_{R}} \frac{\partial \left| \int_{-f_{D}}^{f_{D}} S(v) \exp\left(j2\pi v\Delta t\right) dv \right|^{2}}{\partial \Delta t} \Big|_{\Delta t=0} = 0$$

$$\frac{\partial^{2} \rho_{P}^{(\text{Doppler})}}{\partial \Delta t^{2}} \Big|_{\Delta t=0} = \frac{1}{P_{R}^{2}} \frac{\partial^{2} \left| \int_{-f_{D}}^{f_{D}} S(v) \exp\left(j2\pi v\Delta t\right) dv \right|^{2}}{\partial \Delta t^{2}} \Big|_{\Delta t=0}$$
(32)

$$=-8\pi^2\sigma_{\nu}^2\tag{33}$$

となるので、 $ho_{P}^{(Doppler)}$ は、(22),(32),(33)式より、

$$\rho_P^{\text{(Dopplet)}}(\Delta t) \approx 1 - 4\pi^2 \sigma_v^2 \Delta t^2 \tag{34}$$

と近似できる。

周波数相関 $\rho_P^{(delay)}$ に対しては、 $\Delta f = W_e = 1/T_e$ と対応付けると、

$$\rho_P^{(\text{delay})}(1/T_e) \approx 1 - \left(2\pi\sigma_\tau / T_e\right)^2 \tag{35}$$

となる。また、自己相関 $\rho_P^{(Doppler)}$ に対しては、 $\Delta t= T_e$ と対応付けると、

$$\rho_P^{\text{(Dopplet)}}(T_e) \approx 1 - \left(2\pi\sigma_v T_e\right)^2 \tag{36}$$

となる。

式(19)より、SIR_{delay}およびSIR_{Doppler}は、それぞれ次式となる。

$$SIR_{delay} \approx \frac{1 - \left(2\pi\sigma_{\tau}/T_{e}\right)^{2}}{\left(2\pi\sigma_{\tau}/T_{e}\right)^{2}} \approx \frac{T_{e}^{2}}{\left(2\pi\sigma_{\tau}\right)^{2}}$$
(37)

$$SIR_{Doppler} \approx \frac{1 - (2\pi\sigma_v T_e)^2}{(2\pi\sigma_v T_e)^2} \approx \frac{1}{(2\pi\sigma_v T_e)^2}$$
(38)

(37),(38)式では、共に最後の右辺式が、最も粗い近似になるが、本稿では、見通しの良い目的式を得るためにこれを採用する。二つの寄与は、(18)式より、以下の形にまとめられる。

$$\frac{1}{SIR} = \frac{1}{SIR_{delay}} + \frac{1}{SIR_{Doppler}}$$

$$\approx 4\pi^2 \left(\frac{\sigma_r^2}{T_e^2} + \sigma_v^2 T_e^2\right)$$
(39)

実効シンボル長 T_{e} は、帯域幅 (= W_{e})を保ったまま、任意に定めて良いので、1/SIRを最小に(すなわちSIRを最大に)する値 $T_{e,opt}$ を求めると、

$$\frac{\partial \frac{1}{SIR}}{\partial T_e} = 4\pi^2 \left(-\frac{2\sigma_\tau^2}{T_e^3} + 2\sigma_\nu^2 T_e \right) = 0$$
(40)

より、Te, opt および、その時のSIR の最大値SIRmax は次式となる。

$$T_{e,opt} = \sqrt{\frac{\sigma_r}{\sigma_v}} \tag{41}$$

$$SIR_{\max} = \frac{1}{8\pi^2 \sigma_v \sigma_\tau} \tag{42}$$

これより、求めたい通信路容量Cは、次式となる。

$$C \approx W_s \log_2 \left(1 + \frac{1}{\frac{1}{\Gamma_0} + 8\pi^2 \sigma_\nu \sigma_\tau} \right) \equiv W_s C_0$$
(43)

ここで、Gは帯域幅で正規化した通信路容量(以下、正規化通信路容量と呼ぶ)である。

このようにして、スプレッドファクタ: **の**, **o**, **o**, **e**組み入れ、シャノン式を拡張した新しい通信路容量式を得ることができた。元の式((10)式)が主張しているように、伝送方式にどのような工夫をしても、誤りなく伝送できるビット数は、これを越えないと言う限界条件である。

(41)式より、時間・周波数領域内でのシンボルの最適配置は帯域 W_s の信号を、それよりかなり小さい帯域 W_e に変換することであり、送信信号全体の帯域幅を維持するならば W_s/W_e 個の帯域分割を行うことを意味し ている。これは、マルチキャリア伝送を示唆し、OFDM伝送はそのひとつである。図4は、伝搬パラメータと システムパラメータの関係を表すダイアグラムである。領域AとAは伝搬環境を表している。領域Aは $\sigma_r \times \sigma_v$ が占める領域、A'は(τ_{max} - τ_{min})×(v_{max} - v_{min})が占める領域である。領域Bはシングルキャリア伝送において、 帯域幅 W_s の信号が与えられたときの符号($T_s \times W_s$)が占める領域であり、 $T_s W_s$ =1である。最適化により、 $T_{e.opt} W_{e.opt}$ =1のもとでは、 $T_{e.opd} W_{e.opt}$ = $T_{e.opt}^2$ = $\sigma_d \sigma_v$ となる。最大の通信路容量を得るために、領域Bを、そ の面積を保ったまま、領域Aと相似形の領域C($T_{e.opt} \times W_{e.opt}$)に変換すればよいと言うことになる。

図4 伝搬パラメータとシステムパラメータの関係を表すダイアグラム

ー例として、 $\sigma_{=1}\mu_{s}$, τ_{max} - τ_{min} =3 μ_{s} , f_{D} =500Hz (速度 v=30m/s (108km/h)、周波数 5GHz、 W_{s} =10MHz (T_{s} =0.1 μ_{s})を考える。到来方向の角度分布を水平面で一様と仮定する(いわゆる Jakes モデル)と、 σ_{r} =354Hz になる。領域の大きさを(t, f)で表すとき、領域Aは(1 μ_{s} ,345Hz)、A'は(3 μ_{s} ,1000Hz)となる。また、領域B は(0.1 μ_{s} ,10MHz)となる。最適に変換された領域Cは、 $T_{e,opt}W_{e,opt}$ =1, $W_{e,opt}$ - σ_{r} より、(53 μ_{s} ,19kHz) となる。

4. 通信路容量で見る情報伝送の物理限界

4.1 帯域幅制限領域と電力制限領域

二重選択性フェージング環境での通信路容量式(43)を得た。この式では、帯域幅 W_{s} 、SNR Γ_{0} 、スプレッドファクタ $\sigma_{v}\sigma_{r}$ がパラメータである。実際の通信では、受信機雑音は帯域幅に比例するので、SNR は、平均信号電力
 P_{s} 、1Hz 当たりの雑音電力 $P_{\lambda 0}$ を用いて、
 $P_{s}/(W_{s}P_{\lambda 0})$ で与えられる。これを用いて式(43)を書き換えると次式になる。

$$C(W_s, P_s, P_{N0}, \alpha) \approx W_s \log_2 \left(1 + \frac{1}{W_s P_{N0} / \langle P_s \rangle + 8\pi^2 \alpha} \right) \qquad (\alpha \equiv \sigma_v \sigma_\tau)$$
(44)

この式において、平均電力<Ps>、すなわち SNR Г₀(=<Ps>/(WsP_M)が十分大きく取れる場合と、帯域幅 Ws が十分大きく取れる場合を想定し、それぞれの通信路容量の極限を C₁, C₂とすると、それらは、

$$C_1 \equiv \lim_{P_s \to \infty} C \approx W_s \log_2 \left(1 + \frac{1}{8\pi^2 \alpha} \right) \equiv W_s C_{0,floor}$$
(45)

$$C_2 \equiv \lim_{W_s \to \infty} C \approx \frac{1}{\log_e 2} \frac{\langle P_s \rangle}{P_{N0}} = C_{AWGN}$$
(46)

となる。ここで、*C*0,*floor*は正規化通信路容量(*C*0)のフロア値(伝搬パラメータであるスプレッドファクタ で決まる値:飽和値)、*CAWGN*は、熱雑音のみの環境での通信路容量である。なお、帯域幅を広くすること によって電波伝搬問題が克服されることは、1966年、Pierceによって既に指摘されている[24]。

通信では、帯域幅 W_sと信号電力 P_sがシステムリソースになる。一方、通信阻害要因が熱雑音 P_{A0}と干渉雑音(スプレッドファクタに比例)である。C₁は、信号電力(P₃)に依らず、帯域幅(W₃)に比例するケース、すなわち、帯域幅制限領域にある。一方、C₂は、帯域幅に依らず信号電力に比例するケース、すなわち、電力制限領域にある。以下、二つのケースについて、通信路容量と電波伝搬の関係について調べてゆく。

帯域幅制限領域

この領域は、帯域幅を一定にしておいて、信号電力 Psを大きくしてゆくとき、通信性能(通信路容量) の行き着く先は、帯域幅と電波伝搬特性で決まるため、帯域幅制限領域としている。この後に述べる電力 制限領域は低 SNR で広帯域に薄く情報を送る方式であり、一種のスペクトル拡散通信になるが、帯域幅制 限領域は、それに対するものとして位置づけられ、高 SNR の非スペクトル拡散通信である。この場合は、 単位帯域幅あたりの通信路容量(正規化通信路容量、Co [bps/Hz])は信号の SNR (Гo)と SIR (1/(8 𝗝𝑌))で 決まるものとなり、基本計算式は(43)式である。図5は、正規化通信路容量 Coを、スプレッドファクタを パラメータに、SNR に対して表している。スプレッドファクタの値の増加に応じて、通信路容量がより小 さい値で飽和することがわかる。この飽和値(フロア値)が式(45)で与えられる Co. floor である。

伝送特性の極限を定める伝搬要因は、二つの伝搬パラメータの積(スプレッドファクタ)であって、一 方のみが過酷な環境であっても、もう一方に余裕があれば対策が可能である。図6は、スプレッドファク タ(σνσ_c)に対する正規化通信路容量のフロア値 C_{0, floor}と実効最大 SIR(SIR_{max})の関係を表している。併 せて、電波伝搬的に見たいくつかの通信環境に対するスプレッドファクタの生起範囲を同図の当該位置に 示している。この範囲は、周波数 800MHz~5GHz を対象に、以下の環境条件から算定している。

i) 屋内歩行 (Indoor walking) :移動速度 v =0.5~1m/s、σ_t=10~100ns

ii) 屋外歩行 (Outdoor walking) : $v = 0.5 \sim 2m/s$ 、 $\sigma_{\tau} = 0.2 \sim 3\mu s$

iii) 屋外高速移動 (Outdoor vehicular) : $v = 10 \sim 30 \text{m/s}$ 、 $\sigma_\tau = 0.2 \sim 3 \mu \text{s}$

結果として、それぞれのスプレッドファクタの値の範囲は、i) 9.4×10⁻⁹~1.2×10⁻⁶、ii) 1.9×10⁻⁷~7.1×10⁻⁵、 iii) 3.8×10⁻⁶~1.1×10⁻³となる。

図5 スプレッドファクタをパラメータとする正規化通信路容量の SNR 特性

図6 スプレッドファクタ ($\sigma_{v}\sigma_{r}$)、正規化通信路容量のフロア値 ($C_{0, floor}$)、実効最大 SIR (SIR_{max})の関係

電力制限領域

この領域は、平均信号電力を一定にしておいて、帯域幅 Wsを大きくしてゆくとき、通信性能(通信路容量)の行き着く先は信号電力で決まるため、電力制限領域としている。電力制限領域は信号成分が低電力 密度のスペクトル拡散通信である。図7は(44)式により、<Ps>/Px0(=10⁸, 10⁹)とスプレッドファクタを パラメータとした通信路容量の帯域幅特性である。図より Wsが十分大きいところで、(46)式で与えられる

通信路容量の飽和値 G_2 に収束してゆく様子がわかる。スプレッドファクタ $\alpha \leq 0.001$ では、二重選択性のな い $\alpha = 0$ のカーブに近いものになっている。すなわち、この領域では電波伝搬依存性は小さい。また、飽和 値に達する帯域幅(臨界帯域幅) $W_{eritical}$ は、 $\alpha \leq 0.001$ では、おおよそ次式で与えられることがわかる。

$$W_{critical} \approx \langle P_S \rangle / P_{N0}$$
 ($\alpha \le 0.001$)

(47)

臨界帯域幅 $W_{critical}$ は熱雑音のみの環境の通信路容量 C_{AWCAVI} にも近い。この意味をもう少し考察したい。 通信路容量の議論では、特定の通信方式(変調方式、誤り制御方式など)を対象としないが、OFDMで説明す るのが分かりやすいのでこれを用いる。帯域 $W_s=W_n$ の通信信号を考える。最大の通信路容量を得る実効シン ボル長は $T_{e,opt}=(\sigma_t/\sigma_t)^{1/2}$ なので、これをOFDMのシンボル長とする。サブキャリア間隔は $\Delta W=1/T_{e,opt}=(\sigma_t/\sigma_t)^{1/2}$ なので、これをOFDMのシンボル長とする。のサブキャリア間隔は $\Delta W=1/T_{e,opt}=(\sigma_t/\sigma_t)^{1/2}$ なので、これをOFDMのシンボル長とする。の信号をさらに広い帯 域層で送ってよいとする。サブキャリア間隔 ΔM は、電波伝搬特性のみによって決まるため、Mの場合と変わ らない。信号電力は一定なので、Mを W_{crew} に変換することによってサブキャリアあたりの信号電力密度は M/M_{crew} 倍小さくなる(図8の赤線)。情報密度も同様である。これは帯域内で冗長性が高まっていることになり、 周波数領域でのダイバーシチ効果が期待できる。ダイバーシチ(例えば、最大比合成ダイバーシチ)では、 信号強度も干渉信号に対する耐性も強めることができるので、+分広い帯域幅があれば、+分な周波数ダ イバーシチ効果が得られ、やがては、熱雑音特性に収束するだろうという理屈である。筆者らは文献[25] (§3.2, §5.2)や私稿[26]において、超広帯域を利用して周波数領域差動符号拡散低電力密度ベースバ ンド無線を提案しているが、そこで見られる性能も、拡散率を高めることによって(より定量的には臨界帯域 幅以上にすることによって)、伝搬問題が完全に克服されることを示している。

図7 スプレッドファクタαをパラメータとする通信路容量の帯域幅特性(</P₃/P₁₀=10⁸と10⁹の場合)

両領域の整理

二つの領域の関係を図9に整理する。二つの通信リソース(帯域幅 W_s と信号電力 P_s)を定めるに際して、先ず、スペクトル拡散にするかどうかを決める。スペクトル拡散するためには W_s > $W_{critical}$ 、すなわち W_s > < P_s >/ P_{N0} であり、通信路容量は C_{AWGN} に収束する。この領域、すなわち、電力制限領域では、通信路容量は信号電力に比例し、電波伝搬問題(二重選択性フェージング問題)は克服される。

一方、 $W_s << W_{critical}$ では、SN 比(Γ_0)とSI 比(SIR_{max})の大小関係で、電波伝搬の影響の度合いが分かれる。 $\Gamma_0 << SIR_{max}$ では、電波伝搬の影響は小さく、通信路容量は帯域幅に比例し、かつ、SN 比の対数に比例する。これに対して、 $\Gamma_0 >> SIR_{max}$ のケースでは、SI 比の対数に比例することになるので、スプレッドファクタの値が大きくなって、SI 比が大きく低下するケースでは、電波伝搬の影響が支配的となる。

図8 OFDMを例としたスペクトル拡散の説明図

図9 電波伝搬と通信路容量の関係:帯域制限領域と電力制限領域

4.2 最適設計からのズレの影響

信号設計が常に最適に行われることは、現実的にはむしろ少ないであろう。そこで、実効シンボル長 *T*_e が最適値 *T*_{e,opt}からずれた場合の通信路容量について調べる。通信路容量の概念が最適設計の下での無誤り 最大伝送レートを与えるものであるため、非最適設計と組み合わせて議論することは定義矛盾となるが、ここでは、このまま通信路容量と呼ぶ。

実効シンボル長の最適値からのズレの係数をβと置き、以下で定義する。

$$\beta \equiv T_e / T_{e,opt} \tag{48}$$

このとき、(39)式で与えられる SI 比は以下のように変形できる。

$$SIR = \frac{1}{4\pi^2} \frac{T_e^2}{\sigma_\tau^2 + \sigma_\nu^2 T_e^4}$$

図10 実効シンボル長(Te)の最適値(Teopelからのずれに対する正規化通信路容量フロア値(上限値)の低下

帯域幅制限領域では、(43)式の 8 $\pi^2 \alpha \delta 4\pi^2 \alpha (1+\beta^4)/\beta^2$ で置き換えることにより、通信路容量の β 依存性を 調べることができる。

図10は正規化通信路容量の飽和値(フロア値) $C_{0,floor}$ を、スプレッドファクタをパラメータとして示している。図より、 β が1に比べて倍・半分になると、1ビット程度の通信路容量低下がわかる。

電力制限領域では、通信路容量の飽和は、熱雑音時の容量 *C*_{AWGN} に収束する性質があり、そのことは、 *T*_eの最適設計からのずれがあっても変わらないが、*α*=0.001 程度では、収束値に達するのに、より広い帯 域幅を必要とすることが調べられている[5], [7]。いずれの領域においてでもあるが、特に、帯域幅制限領 域においては、実効シンボル長を最適値 *T*_{e.opt}に近づけることが重要であると結論できる。

5. BER のフロア値とスプレッドファクタ

二重選択性フェージング環境下での通信路容量評価においては、3,4節で述べたように、スプレッド ファクタが伝搬伝搬のキーパラメータであった。同環境下でのBERのフロア値にも現れるかどうかを探っ てみたい。フロア値を与える誤りの発生は、ドップラー広がりに起因するファーストフェージング(信号 点の位相変動によるもの:ランダムFM)と、遅延の広がりによる周波数選択性フェージング(符号間干渉 によるもの)の二つがあり、BER が 10⁻²程度以下では、両現象が共に存在する場合は、両者の和で近似で きる。

ドップラー広がりによる BER フロア値 *Pe,Doppler* は、変復調方式に依存するが、ドップラー広がりに強い 遅延検波方式である DBPSK, DQPSK に対しては

$$P_{e,Doppler}(\sigma_{v};T_{s}) \approx k_{v}(\sigma_{v}T_{s})^{2}$$
(48)

となる[1]。k・は変復調方式に依存する比例定数であり、DBPSKではポ、DQPSKでは2ポである。

遅延広がりによる BER フロア値 $P_{e,delay}$ の方はどうであろうか?これについては、筆者らが編み出した等価伝送路モデル[27],[28]を体系的にまとめた私稿[8](の§4.8)で示しているように、BER フロア値は σ_r^2 に比例し、以下の式で近似できる。

$$P_{e\,delay}(\sigma_{\tau};T_s) \approx k_{\tau}(\sigma_{\tau}/T_s)^2 \tag{49}$$

ここで、*k*_rも変復調方式に依存する比例定数であり、QPSK 系(CQPSK, DQPSK, *m*4-DQPSK)では約 0.8、 BPSK 系では約 0.08 である。

両者の和を最小にする最適なシンボル変換(シングルキャリア変調: $T_s \rightarrow$ マルチキャリア変調: T_e)を行う。総合 BER のフロア値は、次式で近似できる。

$$P_{e,floor}(\sigma_{v},\sigma_{\tau};T_{e}) \approx k_{v}(\sigma_{v}T_{e})^{2} + k_{\tau}(\sigma_{\tau}/T_{e})^{2}$$
(50)

(50)式の値を最小にする T_e の最適値 $T_{e,opt}$ を求めて、そのときの BER フロア値 $P_{e,floor,min}$ を求めると、次式となる。

$$P_{e,floor,\min} \approx 2\sqrt{k_{\nu}k_{\tau}}\sigma_{\nu}\sigma_{\tau} \quad \text{when } T_{e,opt} = \left(\frac{k_{\tau}}{k_{\nu}}\right)^{1/4}\sqrt{\frac{\sigma_{\tau}}{\sigma_{\nu}}}$$
(51)

上式から、BERのフロア値を最小にする信号設計を行った後の伝送特性にも、スプレッドファクタが現 れてくることがわかる。(51)式で与えられる BER フロアの最小値を典型的な例について示す。周波数を 5GHz、変復調方式を DQPSK (k,=2n, k,=0.8)、電波環境を水平面周囲一様の角度からマルチパス波が到 来するレイリーフェージング環境を想定する。移動速度 v と遅延スプレッド σ_r で表される3つの環境;① 屋内歩行移動 (v=1m/s, σ_r =50ns)、②屋外歩行移動 (v=1m/s, σ_r =1 μ s)、③屋外高速移動 (v=30m/s, σ_r =50ns)においては、それぞれのスプレッドファクタ α は、①5.9×10⁻⁷、②1.2×10⁻⁵、③3.5×10⁻⁴ であるので、 BER フロアの最小値は、①4.7×10⁻⁶、②9.4×10⁻⁵、③2.8×10⁻³と算定される。

前述のとおり、式(51)で算定した BER フロアの最小値は、誤り訂正を適用しない前の BER 値であり、何 らかの対策を施すことによって、この値をされに小さくすることは可能である。

本稿全般を通じた解析より、ワイヤレス情報伝送の限界を追及する際に、電波伝搬の壁として立ちふさ がるのがスプレッドファクタであるというイメージが浮き上がってくる[6]。

本稿を構成する著者文献

- [1] 唐沢好男, 改訂: ディジタル移動通信の電波伝搬基礎, コロナ社, 2016.03.
- [2] Y. Karasawa, "On physical limit of wireless digital transmission from radio wave propagation perspective," *Radio Science*, vol. 51, no. 9, pp. 1600-1612, Sept. 2016.
- [3] 唐沢好男, "二重選択性フェージング環境の通信路容量," 信学技報, AP2016-136, pp. 39-44, 2017.01.
- [4] 唐沢好男, "二重選択性フェージング環境の通信路容量[II]," 信学技報, AP2016-166, pp. 55-60, 2017.02.
- [5] 唐沢好男, "二重選択性フェージング環境の通信路容量[III]," 信学技報, RCS2017-102, pp. 55-60, 2017.07.
- [6] 唐沢好男, "伝搬パラメータ「スプレッドファクタ」について," 信学会 AP研 10 月発表, 2017.10.
- [7] Y. Karasawa, "A simple formula for noncoherent capacity in highly underspread WSSUS channels," IEICE Trans. Commun., vol. E101-B, no. 5, 2018. (to be published in May, 2018). (上記[3]~[5]を整理してまとめている)
- [8] 唐沢好男, "等価伝送路モデル: その思想と実践~電波伝搬視点からのディジタル伝送特性解析~," Tech. Rep. YK-001(私報), pp. 1-35, 2017. <u>http://www.radio3.ee.uec.ac.jp/ronbun/ETP%20model.pdf</u>

参考文献

- [9] T. Kailath, "Sampling models for linear time-variant filters," M.I.T Research Lab. of Electronics, Tech. Rep., no. 352, pp. 1-47, 1959.
- [10] P. A. Bello, "Measurement of random time-varying linear channels," *IEEE Trans. Inf. Theory*, vol. IT-15, no. 4, pp. 469-475, 1969.

- [11] E. Biglieri, J. Proakis, and S. Shamai (Shitz), "Fading channels: Information theoretic and communications aspects," *IEEE Trans. Inf. Theory*, vol. 44, no. 6, pp. 2619–2692, October 1998.
- [12] G. Durisi, U. G. Schuster, H. Bölcskei, and S. Shamai (Shitz), "Noncoherent capacity of underspread fading channels," *IEEE Trans. Inf. Theory*, vol. 56, no. 1, pp. 367–395, 2010.
- [13] G. C. Ferrante, T. Q. S. Quek, and M. Z. Win, "Revisiting the capacity of noncoherent fading channels in mmWave system," IEEE Trans. Commun., (accepted and now available: DOI 10.1109/TCOMM.2016.2565586).
- [14] P. A. Bello, "Characterization of randomly time-variant linear channels," *IEEE Trans. Commun.*, vol. 11, no. 4, pp. 360–393, 1963.
- [15] J. G. Proakis, Digital Communications, McGraw-Hill, New York, NY, U.S.A., fourth edition, 2001.
- [16] R. S. Kennedy, Fading Dispersive Communication Channels, Wiley, New York, NY, U.S.A., 1969.
- [17] R.H. Clarke, "A statistical theory of mobile-radio reception," *Bell Sys. Tech. Jour.*, July-August, pp. 957-1000, 1968.
- [18] C. E. Shannon, "A mathematical theory of communication," *Bell System Technical Journal*, 27, 379–423 & 623–656, July & October, 1948.
- [19] I. E. Telatar and D. N. C. Tse, "Capacity and mutual information of wideband multipath fading channels," *IEEE Trans. Inf. Theory*, vol. 46, no.4, pp. 1384–1400, July 2000.
- [20] A. Lapidoth, "On the asymptotic capacity of stationary Gaussian fading channels," *IEEE Trans. Inf. Theory*, vol. 51, no. 2, pp. 437–446, February 2005.
- [21] M. Médard and R. G. Gallager, "Bandwidth scaling for fading multipath channels," *IEEE Trans. Inf. Theory*, vol. 48, no. 4, pp. 840–852, April 2002.
- [22] G. Durisi, V. I. Morgenshtern, H. Bolcskei, U. G. Schuster, and S. Shamai (Shitz), *Information Theory of Underspread WSSUS Channels*, 2011, pp. 65–116. [Online]. Available: <u>http://publications.lib.chalmers.se/records/fulltext/local_139143.pdf</u>.
- [23] S. Herbert, I. Wassell, and T. H. Loh, "A simple recursively computable lower bound on the noncoherent capacity of highly underspread fading channels," *IEEE Trans. Wireless Commun.*, vol. 15, no. 6, pp. 3964-2978, June 2016.
- [24] J. R. Pierce, "Ultimate performance of M-ary transmission on fading channels," *IEEE Trans. Inf. Theory*, vol. 12, no. 1, pp. 2–5, Jan. 1966.
- [25] J. Nakazato, D. Okuyama, Y. Morimoto, and Y. karasawa, "Frequency-domain differential coding schemes under frequencyselective fading environment in adaptive baseband radio," IEICE Trans., Commun.vol. E99-B, no. 2, pp. 488-498, 2016.
- [26] 唐沢好男,"環境適応型ベースバンド無線:無線通信のパラダイムシフトを目指して,"Tech. Rep. YK-002(私報), pp. 1-35, 2017. <u>http://www.radio3.ee.uec.ac.jp/ronbun/YK-002</u> Baseband Radio.pdf
- [27] Y. Karasawa, T. Kuroda and H. Iwai, "The equivalent transmission-path model," IEEE Trans. Vehicul. Tech., vol. 47, 1, pp. 194-202, 1997.
- [28] 唐沢好男、"広帯域移動通信の多重波伝搬理論とモデリング:-等価伝送路モデルによる「伝搬」と「システム」の橋渡し-"、信学論 B、vol. J83-B, no.12, pp1651-1660, 2000.